

higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

T800**(E)**(A4)T

NATIONAL CERTIFICATE

INDUSTRIAL ELECTRONICS N6

(8080186)

4 April 2019 (X-Paper) 09:00–12:00

This question paper consists of 7 pages and a formula sheet of 3 pages.

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE INDUSTRIAL ELECTRONICS N6 TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Write neatly and legibly.

QUESTION 1: TRANSIENTS

- 1.1 Name the TWO main elements in a transient circuit that can undergo changes as a result of disturbances. (2)
- 1.2 Various options are given as possible answers to the questions below. Choose the answer and write only the letter (A–D) next to the question number (1.2.1–1.2.4) in the ANSWER BOOK.

A simple RC circuit consists of a 20 μ F uncharged capacitor connected in series with a 200 K Ω resistor. The supply voltage is 200 V.

- 1.2.1 The time constant for the simple circuit is ...
 - A 4s.
 - B 0,4 s.
 - C 40 s.
 - D 4 µs.
- 1.2.2 When the capacitor has charged to 85% of the applied voltage, the capacitor voltage would then be ...
 - A 1K7 V.
 - B 1700 mV.
 - C 170 V.
 - D 170 mV.

XX

- 1.2.3 The time taken for the capacitor voltage to rise to 85% of the final value will be ...
 - A 7,589 μs.
 - B 7,589 s.
 - C 7,589 ms.
 - D 0,7589 s.
- 1.2.4 The energy stored in the capacitor when it is fully charged will be ...

XX

- A 0,0002 J.
- B 0,2 J.
- C 2 J.
- D 2 mJ.

(2) [11]

(2)

(2)

(3)

QUESTION 2: TRANSDUCERS

Choose a term from column B that matches a description in column A. Write only the letter (A-E) next to the question number (2.1-2.5) in the ANSWER BOOK.

	COLUMN A		COLUMN B
2.1	Process whereby output signal is made much bigger than input signal	А	attenuation
0.0		В	amplification
2.2	shift the reference level of signal by predictable amount	С	integrator
		D	offsetting
2.3	Component used to isolate output signal from input signal in order to prevent shunting of dropping resistor	Е	buffer amplifier
2.4	Amplifier whereby feedback is obtained by means of capacitor		
2.5	Process whereby output signal is made much smaller than input signal		
			(10 × 1)

QUESTION 3: ULTRASONICS

- 3.1 Indicate whether the following statements are TRUE or FALSE. Choose the answer and write only 'True' or 'False' next to the question number (3.1.1–3.1.5) in the ANSWER BOOK.
 - 3.1.1 Ultrasonic cleaning is a process that does not use a cleaning fluid. \mathbf{X}
 - 3.1.2 During ultrasonic cleaning redepositing of dirt particles on the surface of the material being cleaned is not possible.
 - 3.1.3 During ultrasonic cleaning the surface tension must be high to ensure easier cavitation.
 - 3.1.4 During ultrasonic machining the workpiece is immersed in a suspension of abrasive powder and water.
 - 3.1.5 During ultrasonic soldering the process of cavitation does not occur.

 (5×1) (5)

- 3.2 State the function of the DC bias in the basic circuit of an ultrasonic application.
- 3.3 Name the TWO main groups into which the piezo-electric effect is divided.

(2) [10]

(3)

[10]

QUESTION 4: X-RAYS AND RADIO ACTIVITY

The follo	wing data r	egarding an X-ray m	achine is ava	ilable:		
Planck's	constant:	6,626 × 10 ⁻³⁴	Efficiency:	6,468	× 10 ⁻³	
Cathode	emission:	1 ×10 ¹⁷ electrons pe	er second	X ()	X	
Electron	charge:	1,602 × 10 ⁻¹⁹ C	Atomic numb	er:	42	
Velocity	of light:	3 × 10 ⁸ m/s				
Calculat	e the follow	ing:				
4.1	Supply vol	tage				(3)
4.2	Shortest w	avelength produced				(3)
4.3	Frequency	of radiation				(3)
4.4	Power diss	sipated by tube	XX			(5) [14]

QUESTION 5: AUTOMATIC INSPECTION, TESTING AND NDT

5.1 A 3-way inspection system is also known as a high-go-low system.

Describe the output results represented by each of the following indications:

- 5.1.1 High
- 5.1.2 Go
- 5.1.3 Low

 (3×1) (3)

5.2 Study the diagram below and answer the questions.

XX

5.2.1 Give the full name of the inspection method represented by the circuit diagram above.

5.2.2	Identify the indicated parts by writing the answer next to the letter (A–D) in the ANSWER BOOK.	(4)
5.2.3	Give ONE disadvantage of this inspection method.	(1) [9]

QUESTION 6: ELECTRONIC SAFETY DEVICES

6.1	Name the THREE steps to determine intrinsic safety and briefly describe each.	(6)
6.2	Name the THREE components of which an optical relay should consist.	(3)
6.3	State ONE purpose of fitting electronic safety devices in industry.	(1) [10]

QUESTION 7: ELECTRONIC POWER CONTROL

7.2	Give THREE type gains.	s of damping techniques and their associated controller	(6)
	0		[10]

QUESTION 8: THYRISTOR DEVICES AND SCR SPEED CONTROL

8.1 A single-phase half-controlled bridge converter supplies a certain load. The input AC voltage is 230 V and the load resistance is 10 Ω while the trigger angle is at 30°.

Calculate each of the following:

	8.1.1	Average output voltage	(4)
	8.1.2	Average current	(3)
8.2	Draw a commuta	neat, labelled circuit diagram of a rectifier circuit that uses a ating diode.	(4)
8.3	State the	function of the diode in QUESTION 8.2 above.	(2) [13]

QUESTION 9: PROGRAMMABLE LOGIC CONTROLLERS

Study the ladder diagram below and answer the questions.

	$\begin{vmatrix} 1 & 2 & 3 \\ 1 & 4 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1$	
9.1	Identify the symbols used in parts 1, 2, 3, 8 and 9.	(5)
9.2	How many rungs are represented in the ladder diagram?	(1)
9.3	State the TWO groups of combinations at point 3 which is necessary for it to be ON.	(4)
9.4	State the TWO conditions at point 8 which is necessary for it to be OFF.	(3) [13]

TOTAL: 100

XX

FORMULA SHEET

INDUSTRIAL ELECTRONICS N6

 $A = B \cdot \left(1 - e^{-t/\tau} \right)$ A = Instantaneous value and $A = B \cdot e^{-t/\tau}$ B = Maximum value

$$V = E \cdot \left(1 - 2e^{-t/\tau}\right) = I \cdot R$$
 volts

$$V_D = V_S \left(\frac{R_1}{R_1 + R_2} - \frac{R_3}{R_3 + R_{TH}} \right)$$
volts

$$V_i = \frac{I_L \cdot R_1 \cdot R_D}{R_2} = -\frac{V_o \cdot R_1}{R_2} = \frac{V_o \cdot R_M}{R_M + R_f}$$
volts

$$V_o = -RC \cdot \frac{dV_i(t)}{dt} = -\frac{1}{RC} \int V_i(t) dt + V_C(0)$$
volts

$$V_o = \frac{R_2 R_D I_i}{R_1} = -\left[\frac{V_1 R_f}{R_1} + \frac{V_2 R_f}{R_2} + \frac{V_3 R_f}{R_3} + \dots\right]$$
 volts

Supply rating = Voltage per stage × Number of stages

$$V_{\rm max} = \sqrt{2} \times V_{rms}$$

$$V_{mean} = 0.637 \times V_{max} = \frac{0.637}{2} \times V_{max}$$
 volts

$$V_{mean} = \frac{3 \cdot \sqrt{2}}{\pi} V_{line}$$
 volts

$$V_{mean} = \frac{\sqrt{2}}{2 \cdot \pi} V_{rms} \times (1 + \cos \alpha)$$
 volts

$$V_{mean} = \frac{\sqrt{2}}{\pi} V_{rms} \times (1 + \cos \alpha)$$
 volts

$$V_{mean} = \frac{2 \cdot \sqrt{2}}{\pi} V_{rms} \times Cos \,\alpha \qquad volts$$

$$V_{mean} = \frac{3 \cdot \sqrt{3}\sqrt{2}}{2 \pi} V_{per \ phase} \times (1 + \cos \alpha)$$

Copyright reserved

Please turn over

volts

volts

$$V_{mean} = \frac{3 \cdot \sqrt{2}}{\pi} V_{line} \times Cos \,\alpha \qquad \text{volts}$$

$$V_{line} = \sqrt{3} \times V_{per \ phase}$$
 volts

$$V_{\rm max} = \sqrt{2} \times V_{line} = \sqrt{2} \times V_{rms}$$
 volts

$$I_{rms} = \frac{\sqrt{2}}{2} I_{\text{max}} \qquad amps$$

$$I_{rms} = \frac{\sqrt{2}}{3} I_{max}$$
 amps

$$I_{rms} = \frac{0.707}{2} \times I_{max} \qquad amps$$

$$I_{rms} = I_{peak} \times \sqrt{\frac{\phi}{2 \cdot \pi}} \qquad amps$$

$$I_{peak} = \frac{I_{mean}}{\phi} \times 2\pi$$
 amps

$$I_{tube} = Number of electrons per second \times q$$
 amps

$$I_{max} = Maximum \ safe \ illumination \ \times Tube \ sensitivity$$
 amps

$$Sensitivity = Cathode \ sensitivity \times A \qquad amps/lumen$$

$$P = I^2 \cdot R = V \cdot I = V^2 / R$$
 watts

$$X-ray \ power = P_T \times \eta \qquad watts$$

Dissipated power =
$$P_T$$
 - Power used watts

$$\triangle R = R_{TH} \times \triangle t \times temperature coefficient$$
 ohms

$$Z_{TH} = \frac{T_{rise}}{T_{loss}}$$
 ohms

$$R = \frac{T_1 - T_2}{P} = \frac{L}{\tau}$$
 ohms

$$f = \frac{1}{t} = \frac{c}{\lambda} = \frac{\omega}{h} = \frac{\omega}{2\pi} = \frac{E \times q}{h}$$
 hertz

Copyright reserved

Please turn over

$f_r = \frac{1}{2\pi \times \sqrt{LC}}$	hertz.
$f_n = \frac{1}{2\pi} \times \sqrt{\frac{1}{LC} - \left(\frac{R}{2L}\right)^2}$	hertz.
$\int^n = Amplification$	hertz
$\int = \frac{\pi \cdot R}{\omega \cdot L}$	
$C = \frac{t}{R_L} = \frac{\tau}{R}$	farads
$d = \frac{v \cdot t}{2}$	metres
$\omega = 0,5 \times C \times V^2 = 0,5 \times L \times I^2$	joules
$q = \frac{h \cdot v}{E \cdot \lambda}$	coulombs
$n = t \times f = 1 + \frac{\ln 100}{\int}$	number of oscillations
$\eta = 1, 4 \cdot 10^{-9} \times E \times Z$	per unit
$^{\circ}C_{\max} = V_{i\max} \div V / ^{\circ}C$	Celsius